研究成果

Improved Method for GLONASS Long Baseline Ambiguity Resolution without Inter-Frequency Code Bias Calibration

期刊名称: Remote Sensing
全部作者: Jiasong Zhu*,Yanyan Liu,Bing Wang,Shirong Ye
出版年份: 2018
卷       号: 10
期       号: 7
页       码: 1223-1238
查看全本:
Use of a frequency-division multiple access strategy causes Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) receiving equipment to experience both inter-frequency phase bias (IFPB) and inter-frequency code bias (IFCB). While IFPB can be calibrated using a linear model, there is no general model for IFCB calibration, which causes great difficulty in GLONASS ambiguity resolution over long baselines; most current GLONASS ambiguity resolution research is confined to short baselines. In this paper, based on a single-differencing between-receivers (SDBR) model, a wide-lane phase combination-based approach is proposed to fix the GLONASS ambiguities over long baselines. External precise ionospheric products are introduced to eliminate the ionospheric delay. To mitigate the effect of the residual ionospheric delays, we fix the relative wide-lane ambiguity using the Hatch–Melbourne–Wubbena (HMW) combination. The results show that 96% and 55% of the wide-lane round-off residuals are within 0.2 cycles for the Global Positioning System (GPS) and GLONASS, respectively, if the traditional HMW method is used. The method proposed here for GLONASS can improve these percentages significantly, reaching up to 95.5%. The root mean square (RMS) position errors are 1.43, 1.06 and 4.32 mm for GPS in the north, east and up directions, respectively. When GLONASS with ambiguity fixing is added, the corresponding RMS values are reduced significantly to 1.26, 1.02 and 3.87 mm, respectively.