研究成果

Bidirectional Long Short-Term Memory Network for Vehicle Behavior Recognition

期刊名称: Remote Sensing
全部作者: Jiasong Zhu*,Ke Sun,Sen Jia,Weidong Lin,Xianxu Hou,Bozhi Liu,Guoping Qiu
出版年份: 2018
卷       号: 10
期       号: 6
页       码: 887-908
查看全本:
Vehiclebehaviorrecognitionisanattractiveresearchfieldwhichisusefulformanycomputervisionandintelligenttrafficanalysistasks.Thispaperpresentsanall-in-onebehaviorrecognitionframeworkformovingvehiclesbasedonthelatestdeeplearningtechniques.Unliketraditionaltrafficanalysismethodswhichrelyonlow-resolutionvideoscapturedbyroadcameras,wecapture4K(3840×2178)trafficvideosatabusyroadintersectionofamodernmegacitybyflyingaunmannedaerialvehicle(UAV)duringtherushhours.Wethenmanuallyannotatelocationsandtypesofroadvehicles.Theproposedmethodconsistsofthefollowingthreesteps:(1)vehicledetectionandtyperecognitionbasedondeepneuralnetworks;(2)vehicletrackingbydataassociationandvehicletrajectorymodeling;(3)vehiclebehaviorrecognitionbynearestneighborsearchandbybidirectionallongshort-termmemorynetwork,respectively.Thispaperalsopresentsexperimentalresultsoftheproposedframeworkincomparisonwithstate-of-the-artapproachesonthe4Ktestingtrafficvideo,whichdemonstratedtheeffectivenessandsuperiorityoftheproposedmethod.