研究成果

Real-time Route Recommendation for E-Taxies Leveraging GPS Trajectories

期刊名称: IEEE Transactions on Industrial Informatics
全部作者: TU Wei,Mai Ke,Zhang Yatao,Xu Yang,Huang Jincai,Deng Ming,Chen Long,LI Qingquan
出版年份: 2020
卷       号: 0
期       号:
页       码:
查看全本:
Electric vehicles (EVs) currently face formidable challenges in promotion, i.e., short driving ranges, long charging times, and few charging stations, thereby limiting their acceptability to taxi drivers. Leveraging massive-scale taxi GPS trajectory data, we present a novel real-time route recommendation system for electric taxi (ET) drivers. Taxi travel knowledge, including the probability of picking up passengers and the distribution of destinations, is learned from the raw GPS trajectories. Considering the cascading effect of route decision making, consecutive ET actions are modeled with an action tree. The corresponding expected net revenue is estimated based on the learned knowledge. A prototype online system is developed for providing route recommendations, e.g., when to go to a charging station or cruise on certain roads. An experiment in Shenzhen demonstrates that the average daily net revenue of ET drivers is better than that of 76.2% of gasoline taxi drivers. The presented approach not only increases the revenue of ET drivers in the short term but also improves the viability of EVs in the long run.